已知a,b,c成等差数列,求证:a2-bc,b2-ac,c2-ab是等差数列.

已知a,b,c成等差数列,求证:a2-bc,b2-ac,c2-ab是等差数列.

题目
已知a,b,c成等差数列,求证:a2-bc,b2-ac,c2-ab是等差数列.
答案
证明:∵a,b,c成等差数列,∴2b=a+c,∴4b2=(a+c)2,∵2(b2-ac)-[(a2-bc)+(c2-ab)]=2(b2-ac)-[a2+c2-b(a+c)]=2(b2-ac)-a2-c2+2b2=4b2-(a+c)2=0,∴2(b2-ac)=(a2-bc)+(c2-ab),∴a2-bc,b2-a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.