已知S是两个整数平方和的集合,即S={X|X=m平方+n平方,m属于Z,n属于Z}求证. 若s、t属于S

已知S是两个整数平方和的集合,即S={X|X=m平方+n平方,m属于Z,n属于Z}求证. 若s、t属于S

题目
已知S是两个整数平方和的集合,即S={X|X=m平方+n平方,m属于Z,n属于Z}求证. 若s、t属于S
已知S是两个整数平方和的集合,即S={X|X=m平方+n平方,m属于Z,n属于Z}求证.若s、t属于S,t≠0,则S/T=p平方+Q平方,其中P.Q为有理数
答案是:
若s, t∈S,t ≠0,设s = m2 + n2,t = u2 + v2,其中m, n, u, v∈Z.因为t≠0,故u, v不同时为零.则s/t = st/t2 = (m2 + n2)(u2 + v2)/(u2 + v2)2= ((mu + nv)2 + (mv - nu)2)/(u2 + v2)2= {(mu + nv)/(u2 + v2)}2 + {(mv - nu)/(u2 + v2)}2设p = (mu + nv)/(u2 + v2), q = (mv - nu)/(u2 + v2),则p, q为有理数, 且s/t=p2+q2.
我的问题是:为什么mu + nv)/(u2 + v2)和 (mv - nu)/(u2 + v2)一定是有理数
答案
因为所有的字母都是整数
所以p和q的分子以及分母都是整数
所以p和q都是有理数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.