设f(x)=log3[√(x^2+1)-x]

设f(x)=log3[√(x^2+1)-x]

题目
设f(x)=log3[√(x^2+1)-x]
求证其定义域为R
答案
要使f(x)=log3[√(x^2+1)-x]有意义则
√(x^2+1)-x>0
∴√(x^2+1)>x
当x≤0时,√(x^2+1)>x恒成立
当X>0时,则x^2+1>x^2
则1>0显然成立
综上可得X∈R
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.