如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F. 求证:(1)△ABD≌△ACE; (2)AF平分∠BAC.
题目
如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求证:(1)△ABD≌△ACE;
(2)AF平分∠BAC.
答案
证明:(1)∵BD⊥AC,CE⊥AB,
∴∠AEC=∠ADB=90°,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(AAS).
(2)∵△ABD≌△ACE,
∴AE=AD,
在Rt△AEF和Rt△ADF中,
,
∴Rt△AEF≌Rt△ADF(HL),
∴∠EAF=∠DAF,
∴AF平分∠BAC.
(1)求出∠AEC=∠ADB=90°,根据AAS推出即可.
(2)根据全等求出AE=AD,根据HL证出Rt△AEF≌Rt△ADF,推出∠EAF=∠DAF即可.
全等三角形的判定与性质;等腰三角形的性质.
本题考查了全等三角形的性质和判定和平行线的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有定理HL,全等三角形的性质是:全等三角形的对应边相等,对应角相等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- “古人不见今时月,今月曾经照古人”的意思
- 设an是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则an的前n项和Sn=
- 由地形影响气候的地区哪些
- 已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的什么条件?
- 用括号中的单词填空.I have a large _____ of stamps.(collect)
- 初中英语题两道.
- 圆周率的密率和约率分别是什么?
- 小学四年级巧算(脱式计算)
- 已知:等腰三角形的一边是4,另一边是9,则它的周长是_.
- 甲乙两地相距2250千米,一辆汽客车和一辆货车分别从甲乙两地同时开出,相向而行,货车每小时行70千米,客车的速度是货车的2倍还多40千米,客车和货车经过几小时相遇?
热门考点