以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC

以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC

题目
以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC
答案
题目:
已知A、B、C都是正数,求证:(A+B)(B+C)(C+A)≥8ABC.
证明:利用基本不等式,可得:
(A+B)≥2√(AB)
(B+C)≥2√(BC)
(C+A)≥2√(CA)
以上三式相乘,得:
(A+B)(B+C)(C+A)≥2√(AB)×2√(BC)×2√(CA)=8ABC
等号当且仅当A=B=C时成立.
注:基本不等式为:对于正数x、y,有:(√x-√y)²≥0,展开整理即得:
x+y≥2√xy
其中√表示二次根号.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.