AB为抛物线y=x^2的一条弦,且/AB/=4,则AB的中点M到直线Y+1=0的最短距离是?

AB为抛物线y=x^2的一条弦,且/AB/=4,则AB的中点M到直线Y+1=0的最短距离是?

题目
AB为抛物线y=x^2的一条弦,且/AB/=4,则AB的中点M到直线Y+1=0的最短距离是?
答案
设A(x1,y1),B(x2,y2),焦点为F.
可以知道准线y=-1/4,所求的距离是S=(y1+y2)/2+1
S=[(y1+1/4)+(y2+1/4)]/2+3/4
y1+1/4不就是A到准线的距离吗?
有抛物线定义:y1+1/4=AF.
同理:y2+1/4=BF
S=(AF+BF)/2+3/4
又因为AF+BF>=AB,当A,F,B共线是等号成立.
所以S>=AB/2+3/4=11/4
所以最短距离是11/4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.