设f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π),其中ω>0,求函数y=f(x)的值域,请看问题补充
题目
设f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π),其中ω>0,求函数y=f(x)的值域,请看问题补充
f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π)
=4(coswxcosπ/6+sinwxsinπ6)sinwx+cos2wx
=2√3sinwxcoswx+2sin²wx+cos2wx
=√3sin2wx+1-cos2wx+cos2wx
=√3sin2wx+1
最大值1+√3,最小值1-√3
不懂这个最大值最小值怎么求出来的
答案
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点