如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′=_.
题目
如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=
,则此三角形移动的距离PP′=______.
答案
由平移的性质知,P′Q′=PQ=
,RQ∥R′Q′,
∴△P′QH∽△P′Q′R′
∵S
△P′QH:S
△P′Q′R′=P′Q
2:P′Q′
2=1:2,
∴P′Q=1,
∴PP′=
−1.
故答案为
−1.
根据平移的性质知,P′Q′=PQ=
,RQ∥R′Q′,所以S
△P′QH:S
△P′Q′R′=P′Q
2:P′Q′
2=1:2,即PP′=
−1.
相似三角形的判定与性质;平移的性质.
本题利用了平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点