如何证明y=cos√x 不是周期函数

如何证明y=cos√x 不是周期函数

题目
如何证明y=cos√x 不是周期函数
答案
周期函数的定义
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
证明:
函数y=cos√x 的定义域为R.
假设存在T(T不等于0),使得对R内的任意的x都有
f(x)=cos√x =cos√(x+T)
取x=4,显然√4 与√(4+T)不相等,故假设不成立.即
y=cos√x 不是周期函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.