当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程

当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程

题目
当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程
答案
sin^4(x)-2cos^2(x)+a^2=0
sin^4(x)-2(1-sin²x)+a²=sin^4(x)+2sin²x+a²-2=0
sin²x=√(3-a²)-1
只有 当3-a²≥1时才有实数解,
所以 a²≤2,a的取值范围 -√2≤a≤√2
sinx=±√[√(3-a²)-1]
x1=arcsin√[√(3-a²)-1]
x2=-arcsin√[√(3-a²)-1]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.