已知三角形ABC的外接圆半径为R,且满足2R(sin平方A-sin平方C)=(√2a-b)sinB.求三角形ABC面积的最大值
题目
已知三角形ABC的外接圆半径为R,且满足2R(sin平方A-sin平方C)=(√2a-b)sinB.求三角形ABC面积的最大值
2R(sin²A-sin²C)=(√2a-b)sinB
(2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinB
a²-c²=(√2a-b)b=√2ab-b²
a²+b²-c²=√2ab
cosC=(a²+b²-c²)/(2ab)=√2/2
C=45度
c=2RsinC=√2R
c²=2R²=a²+b²-√2ab≥(2-√2)ab……a=b时取等号 (这一步是为什么?)
ab≤2R²/(2-√2)=(2+√2)R²
S=(1/2)absinC=(√2/4)ab≤[(√2+1)/2]R²
即:三角形ABC的面积的最大值=[(√2+1)/2]R² (此时a=b)
答案
c²=a²+b²-√2ab
这是余弦定理
C=45,cosC=√2/2
c²=a²+b²-2abcosC得到
因为(a-b)²>=0
a²+b²-2ab>=0
所以a²+b²>=2ab
所以
a²+b²-√2ab>=2ab-√2ab
即a²+b²-√2ab>=(2-√2)ab
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点