设抛物线y^2=2px焦点为F,直线l过点F交抛物线于A,B两点,A,B纵坐标分别为y1,y2,证y1y2=-p^2

设抛物线y^2=2px焦点为F,直线l过点F交抛物线于A,B两点,A,B纵坐标分别为y1,y2,证y1y2=-p^2

题目
设抛物线y^2=2px焦点为F,直线l过点F交抛物线于A,B两点,A,B纵坐标分别为y1,y2,证y1y2=-p^2
答案
焦点F(p/2,0)
若l与x轴垂直,有:
A(p/2,p),B(p/2,-p),y1y2=-p^2
若l不与x轴垂直,设l:y=k(x-p/2)
x=y^2/(2p)代入直线l的方程得:
y=k(y^2/(2p)-p/2)
化简得:ky^2/(2p)-y-kp/2=0
该方程的两根即为A,B两点的纵坐标
y1y2=(-kp/2)/(k/(2p))=-p^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.