已知定点F(1,0),定直线l:x=-1,动直线m:y=k(x-4)(k不=o)

已知定点F(1,0),定直线l:x=-1,动直线m:y=k(x-4)(k不=o)

题目
已知定点F(1,0),定直线l:x=-1,动直线m:y=k(x-4)(k不=o)
证明:动直线上一定存在相异两点A,B,它们到点F与到直线L的距离相等
答案
设定动直线m上的点M为(a,b)
则M(a,k(a-4))
M到直线l距离为 │a+1│
M到F距离为√(a-1)2+k2 (a-4)2 (√为根号)
由命题条件点F与到直线l的距离相等得
(a+1) =√(a-1)2+k2 (a-4)2
(a+1)2= (a-1)2+k2 (a-4)2
a2+2a+1=a2-2a+1+k2a2-8k2a+16k2
-4a+ k2a2-8k2a+16k2=0
a=(8k2+4±√(8k2+4)2-4k2·16k2)/2k2
化简根号里式子(8k2+4)2-64k4 =(8k2+4+8k2)( 8k2+4-8k2)=4 (16k2+4)>0
a= [4k2+2±2√(4k2+1) ]/k2
所以a有2个不相等实数值,也就是说对于动直线m上的M点F和直线l相等距离,恒有两个不同的点满足到点F和直线l相等距离,即动直线上一定存在相异两点A,B,它们到点F与到直线l的距离相等
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.