如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.

如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.

题目
如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.
答案
证明:连接BE、EC,
∵BD=DC,DE⊥BC
∵BE=EC.
∵AE平分∠BAC,EM⊥AB,EN⊥AC,
EM=EN,∠EMB=∠ENC=90°.
在Rt△BME和Rt△CNE中,
∵BE=EC,EM=EN
BE=EC
EM=EN

∴Rt△BME≌Rt△CNE(HL)
∴BM=CN.
连接BE、EC,由中垂线的性质就可以得出BE=CE,由EM⊥AB,EN⊥AC,AE平分∠BAC由角平分线的性质就可以得出EM=EN,在证明Rt△BME和Rt△CNE全等及可以得出结论.

全等三角形的判定与性质;角平分线的性质.

本题考查了角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.