【三角函数恒等变换】在△ABC中,已知tan[(A+B)/2]=sinC,给出以下四个论断,其中正确的是?

【三角函数恒等变换】在△ABC中,已知tan[(A+B)/2]=sinC,给出以下四个论断,其中正确的是?

题目
【三角函数恒等变换】在△ABC中,已知tan[(A+B)/2]=sinC,给出以下四个论断,其中正确的是?
【论断】:①tanA·cotB=1 ②0<sinA+sinB≤sqrt2 ③sin^2 A+cos^2 B=1 ④cos^2 A+cos^2 B=sin^2 C
【选项】:A.①③ B.②④ C.①④ D.②③
答案
(A+B)/2+ C/2=90°,Sin(A+B)/2=cos C/2,cos(A+B)/2= Sin C/2,tan[(A+B)/2]= Sin(A+B)/2 /cos(A+B)/2= cos C/2 /Sin C/2,tan[(A+B)/2]=sinC可化为:cos C/2 /Sin C/2=2 Sin C/2 cos C/2cos C/2=2 Sin ²C/2 cos C...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.