若p是任意一个大于5的质数,证明p必可整除np=1111...111(

若p是任意一个大于5的质数,证明p必可整除np=1111...111(

题目
若p是任意一个大于5的质数,证明p必可整除np=1111...111(
(假设这是一个十进制中由p-1个1组成的数)
答案
记10进制下p-1个1组成的数为n,
则9n是10进制下p-1个9组成的数 = 10^(p-1)-1.
因为质数p > 5,所以p与10互质.
由Fermat小定理,p | 10^(p-1)-1 = 9n.
又p与9互质,故p | n.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.