已知A(0,4),P是抛物线y=x^2+1上任意一点,求|PA|的最小值.

已知A(0,4),P是抛物线y=x^2+1上任意一点,求|PA|的最小值.

题目
已知A(0,4),P是抛物线y=x^2+1上任意一点,求|PA|的最小值.
答案
设P(t,t^2+1),
则|PA|^2=(t-0)^2+(t^2+1-4)^2
=2t^2-6t+9=2(t-3/2)^2+9/2≥9/2,
所以|PA|的最小值为(3√2)/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.