S=根号(1+1/1^2+1/2^2)+根号(1+1/2^2+1/3^2)+.+根号(1+1/2003^2+1/2004^2),

S=根号(1+1/1^2+1/2^2)+根号(1+1/2^2+1/3^2)+.+根号(1+1/2003^2+1/2004^2),

题目
S=根号(1+1/1^2+1/2^2)+根号(1+1/2^2+1/3^2)+.+根号(1+1/2003^2+1/2004^2),
求S的整数部分
答案
[1+1/n-1/(n+1)]^2
=[1+1/n(n+1)]^2
=1+2/n(n+1)+[1/n(n+1)]^2
=1+2/n(n+1)+[1/n-1/(n+1)]^2(平方展开)
=1+1/n^2+1/(n+1)^2
所以S=(1+1/1-1/2)+(1+1/2-1/3)+……+(1+1/2003-1/2004)
=2003-1/2004
所以S的整数部分是2002
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.