一道积分应用问题 求平面图形的面积

一道积分应用问题 求平面图形的面积

题目
一道积分应用问题 求平面图形的面积
求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与x轴所围成的平面图形的面积
[0,2π]这个是怎么分析出来的啊?
答案
S=∫[0≤t≤2π]a(1-cost)d[a(t-sint)]
=a²∫[0,2π]{(1-cost)²}dt
=a²[t+t/2+(sin2t)/4+2sint]|[0,2π]值差
=3a²π(面积单位)
(摆线又叫旋轮线.是一个圆(半径a)切于 x轴.切点(0,0).这个点在圆周
上为A.圆延x轴滚动.A点的轨迹即旋轮线.t是OA(O是圆心)对于原始位置的转
角.旋转一周正好形成一拱.)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.