若函数f(x)连续,且F(X)的导数等于f(x),求∫f(t+a)dt,其中积分上限是x,积分下限是0,
题目
若函数f(x)连续,且F(X)的导数等于f(x),求∫f(t+a)dt,其中积分上限是x,积分下限是0,
答案
u=t+a,du=dt
u积分下限为0+a=a,上限为x+a
∫(0,x)f(t+a)dt=∫(a,x+a)f(u)du=F(u)|(a,x+a)=F(x+a)-F(a)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点