如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M. (1)试说明:AE⊥BF; (2)判断线段DF与CE的大小关系,并予以说明.
题目
如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.
答案
(1)方法一:如图①,
∵在▱ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.(2分)
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.(3分)
∴∠AMB=90°.
∴AE⊥BF.(4分)
方法二:如图②,延长BC、AE相交于点P,
∵在▱ABCD中,AD∥BC,
∴∠DAP=∠APB.(1分)
∵AE平分∠DAB,
∴∠DAP=∠PAB.(2分)
∴∠APB=∠PAB.
∴AB=BP.(3分)
∵BF平分∠ABP,
∴AP⊥BF,
即AE⊥BF.(4分)
(2)方法一:线段DF与CE是相等关系,即DF=CE,(5分)
∵在▱ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.(7分)
又∵在▱ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.(8分)
方法二:如图,延长BC、AE设交于点P,延长AD、BF相交于点O,
∵在▱ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴BP=AB.
同理可得,AO=AB.
∴AO=BP.(6分)
∵在▱ABCD中,AD=BC,
∴OD=PC.
又∵在▱ABCD中,DC∥AB,
∴△ODF∽△OAB,△PCE∽△PBA.(7分)
∴
=
,
=
.
∴DF=CE.(8分)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 在一个底面直径是4分米,高5分米的圆柱体木料中挖出一个最大的圆锥.剩余部分的体积是多少?
- 有84人参加表演,要是每排的人数一样多,所站的队列不得少于5列,怎样才能不多出人来
- 我会尽力完成这项工作的 (翻译)
- 《鲁宾孙漂流记》读后感400字左右
- 当m取什么整数时,关于x方程2分之1mx-3分之5=2分之1(x-3分之4)的解为正整数
- 已知X,Y为实数,且(根号X-2)+y的平方+6y+9=0,求2X-y的值.
- 设抛物线x^2=-4y的准线与y轴的焦点为C,过点C作直线l交抛物线A、B两点,求线段AB中点M的轨迹方程.
- 有没有现在可以帮我计算矩阵的特征值和特征向量的
- 下列家用电器和通讯设备中,没有利用电磁波工作的是A电熨斗 B移动电话 C微波炉 D电视机
- 一道初三数学题,快呀!要写作业!
热门考点