高等数学中的几道习题
题目
高等数学中的几道习题
1.∫∫D2ydxdy,式中积分区域D由√2-x2≤y≤1+√1- x2所确定.
答案
先画个图,可以知道积分区域是 圆x^2+y^2=2,和圆x^2+(y-1)^2=1所围成的y=1之上的月牙型区域,易求得两圆的交点的横坐标分别为1和-1,所以
∫(-1,1)∫(根号(2-x^2),1+根号(1-x^2))2ydydx,
其中∫(-1,1)表示积分的上下限为1和-1.
上式=∫(-1,1)2*根号(1-x^2)dx
而由定积分的定义,∫(-1,1)根号(1-x^2)dx 表示圆
x^2+y^2=1的上半圆的面积,显然为pi/2,
所以原式=2*(pi/2)=pi
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点