设m>0,n>0且n为奇数,证明2^m+1和2^n-1互质

设m>0,n>0且n为奇数,证明2^m+1和2^n-1互质

题目
设m>0,n>0且n为奇数,证明2^m+1和2^n-1互质
答案
首先你得知道,若a,b是正整数,那么存在正整数c,d,使得(a,b)=ac-bd.其中(a,b)表示a b的最大公约数利用这个结论,那么存在正整数c,d,使得(2m,n)=2m*c-n*d现在假设题目不成立,即存在质数p使得p|(2^m+1)和(2^n-1).显然p是...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.