已知a=k+3,b=2k+2,c=3k+1,求a²+b²+c²+2ab-2bc-2ac的值
题目
已知a=k+3,b=2k+2,c=3k+1,求a²+b²+c²+2ab-2bc-2ac的值
半个小时内
答案
原式=(a+b)²+(b-c)²+(c-a)²-a²-b²-c²
=(3k+5)²+(k-1)²+(2k-2)²-(k+3)²-(2k+2)²-(3k+1)²
=[(3k+5)²-(3k+1)²]+[(k-1)²-(k+3)²]+[(2k-2)²-(2k+2)²]
=4(6k+6)-4(2k+2)-4(4k)
=4(6k+6-2k-2-4k)
=16
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点