以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC.试说明: (1)EF=EC; (2)EB⊥CF.

以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC.试说明: (1)EF=EC; (2)EB⊥CF.

题目
以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC.试说明:

(1)EF=EC;
(2)EB⊥CF.
答案
证明:∵△ABE和△BCF都是等边三角形,
∴AB=BE,BC=BF,∠ABE=∠CBF=60°,
∵∠ABC=90°,
∴∠CBE=90°+60°=150°,
∠EBF=360°-60°×2-90°=150°,
∴∠EBF=∠CBE,
在△BCE和△BFE中,
AB=BE
∠EBF=∠CBE
BC=BF

∴△BCE≌△BFE(SAS),
∴EF=EC;
(2)∵△BCE≌△BFE,
∴∠BEC=∠BEF,
又∵EF=EC,
∴EB⊥CF.
(1)根据等边三角形的性质可得AB=BE,BC=BF,∠ABE=∠CBF=60°,再根据周角等于360°求出∠EBF=150°,从而得到∠EBF=∠CBE,然后利用“边角边”证明△BCE和△BFE全等,根据全等三角形对应边相等可得EF=EC;
(2)根据全等三角形对应角相等可得∠BEC=∠BEF,再根据等腰三角形三线合一的性质即可得证.

全等三角形的判定与性质;等边三角形的性质.

本题考查了全等三角形的判定与性质,等边三角形的性质,等腰三角形三线合一的性质,根据角度相等求出∠EBF=∠CBE是证明三角形全等的关键,也是本题的难点.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.