函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
题目
函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
答案是-b/2a>0 为什么?
答案
函数f(x)的图形是将Y轴的右边翻折到左边得到的
所以图形要有4个单调区间,在Y轴的右边必须有2个单调区间
即Y轴的右边的图形必须有一条对称轴
也就是-b/2a>0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点