抛物线y^2=8x上两个动点A,B及一个定点M(xo,yo),F是抛物线焦点,且|AF|,|MF|,|BF|成等差数列,线段AB的垂直平

抛物线y^2=8x上两个动点A,B及一个定点M(xo,yo),F是抛物线焦点,且|AF|,|MF|,|BF|成等差数列,线段AB的垂直平

题目
抛物线y^2=8x上两个动点A,B及一个定点M(xo,yo),F是抛物线焦点,且|AF|,|MF|,|BF|成等差数列,线段AB的垂直平
抛物线y^2=8x上两个动点A,B及一个定点M(xo,yo),F是抛物线焦点,且|AF|,|MF|,|BF|成等差数列,线段AB的垂直平分线与x轴交于一点N
求N点坐标(用xo表示)
答:设A(x1,y1)、B(x2、y2),由|AF|、|MF|、|BF|成等差数列得x1+x2=2x0.
得线段AB垂直平分线方程:①Y-(y1+y2)/2=(x2-x1)/(y1-y2)*(X-x0)
②令y=0,得x=x0+4,所以N(x0+4,0).
问:怎么从①变成②的
答案
由①Y-(y1+y2)/2=(x2-x1)/(y1-y2)*(X-x0)
令Y=0 有-(y1+y2)/2=(x2-x1)/(y1-y2)*(X-x0)
∴X-x0=-(y1+y2)(y1-y2)/2(x2-x1)
∴X-x0=-[(y1)^2-(y2)^2]/2(x2-x1)
又∵A,B在抛物线y^2=8x上
∴(y1)^2=8x1 ,(y2)^2=8x2
∴X-x0=-[(y1)^2-(y2)^2]/2(x2-x1)
∴X-x0=[(y2)^2-(y1)^2]/2(x2-x1)
=( 8x2-8x1)/2(x2-x1)
=4
∴X-x0=4
∴X=x0+4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.