A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.

A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.

题目
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的λ1,λ2的特征向量,则k1α1+k2α2不再是A的特征向量?如何证明呢?另外若λ1,λ2是α1,α2是属于A的某个特征值所对应的特征向量.则α1和α2的线性组合k1α1+k2α2仍为A的属于这个特征值的特征向量,这又怎么证明呢?
答案
第一个用反证
若 k1α1+k2α2≠0 是A的属于特征值a的特征向量
则 A(k1α1+k2α2) = a(k1α1+k2α2), 且k1≠0 且 k2≠0.
所以有 k1Aα1+k2Aα2 = k1λ1α1+k2λ2α2 = ak1α1+ak2α2
所以 k1(λ1-a)α1+k2(λ2-a)α2 = 0
由于A的属于不同特征值的特征向量线性无关
所以 k1(λ1-a) = 0, k2(λ2-a)=0
进而有 λ1=λ2=a 与已知矛盾.

第二个是因为齐次线性方程组 (A-λE)x=0 的解的线性组合仍是它的解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.