从1到2006的所有自然数中,有多少个数乘以72后是完全平方数?

从1到2006的所有自然数中,有多少个数乘以72后是完全平方数?

题目
从1到2006的所有自然数中,有多少个数乘以72后是完全平方数?
我知道答案是31,但不知道结果是怎么得来的.
答案
72=(2*2)*(3*3)*2
因此
完全平方数(设为N*N)*2*72===(2*2)*(3*3)*(2*2)*(N*N)
就还是完全平方数
所以
N*N*2 应该小于2006
也就是说,小于1003的完全平方数符合这个要求,一共是31个(32*32=1024就超出了)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.