已知抛物线C1:y=mx2+(2m+1)x+m+1,其中m≠0. (1)求证:m为任意非零实数时,抛物线C1与x轴总有两个不同的交点; (2)求抛物线C1与x轴的两个交点的坐标(用含m的代数式表示);
题目
已知抛物线C1:y=mx2+(2m+1)x+m+1,其中m≠0.
(1)求证:m为任意非零实数时,抛物线C1与x轴总有两个不同的交点;
(2)求抛物线C1与x轴的两个交点的坐标(用含m的代数式表示);
(3)将抛物线C1沿x轴正方向平移一个单位长度得到抛物线C2,则无论m取任何非零实数,C2都经过同一个定点,直接写出这个定点的坐标.
答案
(1)证明:△=b
2-4ac=(2m+1)
2-4•m•(m+1)=1>0,
∴m为任意非零实数时,抛物线C
1与x轴总有两个不同的交点.
(2)mx
2+(2m+1)x+m+1=0,
分解因式得:(mx+m+1)(x+1)=0,
mx+m+1=0,x+1=0,
∴x
1=-
,x
2=-1,
∴(-
,0),(-1,0),
答:抛物线C
1与x轴的两个交点的坐标是(
−,0),(-1,0).
(3)∵将抛物线C
1沿x轴正方向平移一个单位长度得到抛物线C
2,抛物线C
1:y=mx
2+(2m+1)x+m+1,
∴C
2:y=m(x-1)
2+(2m+1)(x-1)+m+1=mx
2+x,
∴无论m取任何非零实数,C
2都经过同一个定点(0,0),
答:无论m取任何非零实数,C
2都经过同一个定点,这个定点的坐标是(0,0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点