一道初等数论证明题
题目
一道初等数论证明题
证明:12|(n^4+2n^3+11n^2+10n)
答案
n^4+2n^3+11n^2+10n=n(n+1)[n(n+1)+10]其中前面的n(n+1)一定是偶数,后面的n(n+1)+10也是偶数+偶数=偶数,所以整个算式肯定能被4整除.下面我们来考察这个算式能否被3整除.若n=3k,k为整数,则算式含有n的因子,能被3整除...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点