设函数f(x)在[0,1]上连续,且f(0)=f(1)

设函数f(x)在[0,1]上连续,且f(0)=f(1)

题目
设函数f(x)在[0,1]上连续,且f(0)=f(1)
证明:一定存在x0∈[0,1/2],使得f(x0)=f(x0+1/2)
答案
设F(x)=f(x)-f(x+1/2),则:F(1/2)=f(1/2)-f(1);F(0)=f(0)-f(1/2),所以F(1/2)+F(0)=0,可知F(1/2)和F(0)异号,由连续函数的零点存在定理知:必存在x0∈[0,1/2],使得F(x0)=0,即f(x0)=f(x0+1/2)
望采纳!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.