在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F.求证:BM=MN=NC.

在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F.求证:BM=MN=NC.

题目
在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F.求证:BM=MN=NC.
答案
证明:连接AM、AN,
在△ABC中,∠A=120°,AB=AC,
∴∠B=∠C=30°,
又∵ME、NF分别垂直平分AB、AC,
∴AM=BM,AN=NC,
∴∠MBA=∠MAB=30°,∠NAC=∠NCA=30°,
∴∠MAN=60°,
在△ABM和△ANC中,
∠B=∠C
AB=AC
∠BAM=∠CAN

∴△ABM≌△ANC,
∴AM=AN,
△AMN为等边三角形,
∴AM=MN=AN,
∴BM=MN=NC.
连接AM、AN,根据线段垂直平分线性质推出BM=AM,CN=AN,根据等腰三角形性质和三角形的内角和定理求出∠BAM=∠CAN,∠B=∠C,根据ASA证△BAM≌△CAN,推出AM=AN,证出△AMN是等边三角形即可.

线段垂直平分线的性质;等边三角形的判定与性质.

本题综合考查了全等三角形的性质和判定,线段的垂直平分线定理,等边三角形的性质和判定,三角形的内角和定理等知识点的应用,通过做此题能培养学生综合运用定理进行推理的能力,题型较好,难度适中,综合性比较强.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.