∫√[inx+√(x∧2+1)+5]/√(x∧2+1)dx
题目
∫√[inx+√(x∧2+1)+5]/√(x∧2+1)dx
答案
∫√[inx+√(x∧2+1)+5]/√(x∧2+1)dx
=∫√[inx+√(x∧2+1)+5]d[inx+√(x∧2+1)+5]
=2/3 [inx+√(x∧2+1)+5]^(3/2)+c
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点