证明:设A是n阶可逆矩阵,证明:(1)A的伴随矩阵的逆矩阵=A逆矩阵的伴随矩阵(2) (A*)*=|A|的n-2乘以A
题目
证明:设A是n阶可逆矩阵,证明:(1)A的伴随矩阵的逆矩阵=A逆矩阵的伴随矩阵(2) (A*)*=|A|的n-2乘以A
答案
证明: (1)由 AA* = |A|E知 (A*)^-1 = (1/|A|)A由 A^-1 (A^-1)* = |A^-1|E知 (A^-1)* = |A^-1|A = (1/|A|)A比较两式得(A*)^-1 = (A^-1)* (2) 由 A* (A*)* = |A*|E = |A|^(n-1) E等式两边左乘A 得AA* (A*)* = |A|^(n-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点