证明:tanAsinA/(tanA-sinA)=(tanA+sinA)/tanAsinA
题目
证明:tanAsinA/(tanA-sinA)=(tanA+sinA)/tanAsinA
是证明题.
答案
tanAsinA/(tanA-sinA)
=sinA/cosA*sinA/(sinA/cosA-sinA)
=sinA/cosA*sinA*(1/cosA+1)/{(1/cosA+1)*(sinA/cosA-sinA)}
=sinA*sinA(1/cosA+1/cos^2A)/{sinA*(1/cos^2A-1)}
=sinA*sinA(1/cosA+1/cos^2A)*cosA/(sinA*sin^2A/cosA)
=sinA(1+1/cosA)/tanAsinA
=(tanA+sinA)/tanAsinA
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点