lim(x→0)=[(a^x+b^x+c^x)/3]^(1/x)

lim(x→0)=[(a^x+b^x+c^x)/3]^(1/x)

题目
lim(x→0)=[(a^x+b^x+c^x)/3]^(1/x)
a>0,b>0,c>0
答案
令A=lim(x→0)[(a^x+b^x+c^x)/3]^(1/x) 则lnA=lim(x→0)[ln(a^x+b^x+c^x)-ln3]/x 因为这化作一个0/0的形式,所以用罗比达法则: lnA=lim(x→0)(a^xlna+b^xlnb+c^xlnc)/(a^x+b^x+c^x)=ln(abc)/3所以A=(abc)^(1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.