如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为(  ) A.8+27 B.42+25 C.8 D.10

如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为(  ) A.8+27 B.42+25 C.8 D.10

题目
如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为(  )
A. 8+2
7

B. 4
2
+2
5

C. 8
D. 10
答案
连接BD交AC于O,
∵四边形ABCD是正方形,
∴AC⊥BD,OD=OB,
即D、B关于AC对称,
∴DN=BN,
连接BM交AC于N,则此时DN+MN最小,
∴DN=BN,
∴DN+MN=BN+MN=BM,
∵四边形ABCD是正方形,
∴∠BCD=90°,BC=8,CM=8-2=6,
由勾股定理得:BM=
BC2+CM2
=10,
∴DN+MN=BM=10,
故选:D.
连接BD交AC于O,连接BM交AC于N,根据正方形的性质推出D、B关于AC对称,求出DN+MN=BM,在△BCM中由勾股定理求出BM即可.

轴对称-最短路线问题;勾股定理;正方形的性质.

本题主要考查对正方形的性质,勾股定理,轴对称-最短路线问题等知识点的理解和掌握,能求出DN+NM=BM和BM的长是解此题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.