已知{an}为等差数列,公差d≠0 an≠0(n∈N+),且a(k)x^2+2a(k+1)x+a(k+2)=0(k∈N+)

已知{an}为等差数列,公差d≠0 an≠0(n∈N+),且a(k)x^2+2a(k+1)x+a(k+2)=0(k∈N+)

题目
已知{an}为等差数列,公差d≠0 an≠0(n∈N+),且a(k)x^2+2a(k+1)x+a(k+2)=0(k∈N+)
(1)求证:当k取不同自然数时 此方程有公共根
(2)若方程不同的根依次为X1,X2,…,Xn,…,求证数列1/(X1+1),1/(X2+1),…,1/(Xn+1)…为等差数列
答案
证明 (1)∵{an}是等差数列,∴2a(k+1)=a(k)+a(k+2),故方程a(k)x^2+2a(k+1)x+a(k+2)=0可变为[a(k)x+a(k+2)](x+1)=0,∴当k取不同自然数时,原方程有一个公共根-1 (2)原方程不同的根为x(k)=-[a(k+2)]/a(k)=-[a(k)+2d]/...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.