利用三倍角公式,求SIN18度,COS36度的值
题目
利用三倍角公式,求SIN18度,COS36度的值
答案
令x = 18°
∴cos3x = sin2x
∴4(cosx)^3 - 3cosx = 2sinxcosx
∵cosx≠ 0
∴4(cosx)^2 - 3 = 2sinx
∴4sinx2 + 2sinx - 1 = 0,
又0 < sinx < 1
∴sinx = (5^(1/2) - 1)/4
即sin18° = (5^(1/2) - 1)/4.
cos36°=1-2(sin18°)^2=((5^(1/2) + 1)/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点