证明题(不等式证明)

证明题(不等式证明)

题目
证明题(不等式证明)
如果a>0,b>0,p>1,且1/p+1/q=1,则:
ab≤a^p/p+b^q/q
答案
证明:
设00
则x^m-1≤m(x-1)
令x=A/B,则(A/B)^m-1≤m(A/B-1),即A^m·B^(-m)≤m(A/B-1)+1
不等式两边同时乘B,得:A^m·B^(1-m)≤m(A-B)+B=mA+(1-m)B
令m=1/p,A=a^p,B=b^q,则1-m=1-1/p=1/q
代入A^m·B^(1-m)≤mA+(1-m)B中,得:
ab≤a^p/p+b^q/q
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.