x y 属于r xy=1 x大于y 求(x的平方加上y的平方)除以(x-y)的最小值
题目
x y 属于r xy=1 x大于y 求(x的平方加上y的平方)除以(x-y)的最小值
答案
x,y∈R,xy=1,y<x
∴(x²+y²)/(x-y)
=[(x-y)²+2xy]/(x-y)
=[(x-y)+[2/(x-y)]
∵x>y,得x-y>0
∴可以用均值不等式,得
[(x-y)+[2/(x-y)]
≥2[√(x-y)]{√[2/(x-y)}
=2√2
当且仅当x-y=2/(x-y),即x-y=√2时取得等号
即最小值是2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点