函数f(x)=ax2+2(a-3)x+1在区间[-2,+∞)上递减,则a的取值范围是_.

函数f(x)=ax2+2(a-3)x+1在区间[-2,+∞)上递减,则a的取值范围是_.

题目
函数f(x)=ax2+2(a-3)x+1在区间[-2,+∞)上递减,则a的取值范围是______.
答案
∵函数解析式为f(x)=ax2+2(a-3)x+1
∴当a=0时,f(x)=-6x+1,在(-∞,+∞)上为减函数,符合题意;
当a≠0时,因为区间[-2,+∞)上递减,
所以二次函数的图象为开口向下的抛物线,关于直线x=
3−a
a
对称,
可得
a<0
3−a
a
≤−2
,解之得-3≤a<0
综上所述,可得a的取值范围是[-3,0]
故答案为:[-3,0]
分a=0和a≠0两种情况加以讨论:当a=0时,根据一次函数的单调性得到函数在区间[-2,+∞)上递减,符合题意;当a≠0时,函数的图象是开口向下的抛物线,关于直线x=
3−a
a
对称,由此建立关于a的不等式,解之即可得到a∈[-3,0).最后综合即可得到符合题意的实数a的取值范围.

二次函数的性质.

本题给出含有参数a的二次函数,在已知函数的单调区间的情况下求参数a的取值范围,着重考查了函数的单调性、二次函数的图象与性质和分类讨论思想等知识点,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.