设z1=cosx+i,z2=1+isinx,其中x为实数且x∈[0,π/2],i是虚数单位,求函数f(x)=|z1-z2|^2的值域

设z1=cosx+i,z2=1+isinx,其中x为实数且x∈[0,π/2],i是虚数单位,求函数f(x)=|z1-z2|^2的值域

题目
设z1=cosx+i,z2=1+isinx,其中x为实数且x∈[0,π/2],i是虚数单位,求函数f(x)=|z1-z2|^2的值域
求详解
答案
f(x)=|z1-z2|^2=I(cosx-1)+(1-sinx)iI^2=(cosx-1)^2+(1-sinx)^2=2-2(sinx+cosx)=2-2√2sin(x+π/4)x∈[0,π/2],x+π/4∈[π/4,3π/4]所以f(x)max=f(0)=2-2=0f(x)min=f(π/4)=2-2√2所以值域f(x)∈[2-2√2,0]...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.