如何证明三角型重心到顶点的距离与重心到对边中点的距离之比为2:1

如何证明三角型重心到顶点的距离与重心到对边中点的距离之比为2:1

题目
如何证明三角型重心到顶点的距离与重心到对边中点的距离之比为2:1
答案
三角形ABC中,D为AC边上中点,E为AB边上中点,连接BD,CE,DE.BD,CE交于点O.找到OB,OC的中点G,H,连接GH.这样DE,GH分别为三角形ABC,OBC的中位线.所以DE,GH都平行且等于BC的一半.于是DGHE为平行四边行.所以BG等于GO,于是也等于OE,即OE等于二分之一BE.所以重心把中线以1:2分割.证明就这些,可惜不能插图.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.