设函数f(x)可导,且f(x)不等于0,证明曲线y1=f(x)与曲线y2=f(x)sinx在交点处相切.

设函数f(x)可导,且f(x)不等于0,证明曲线y1=f(x)与曲线y2=f(x)sinx在交点处相切.

题目
设函数f(x)可导,且f(x)不等于0,证明曲线y1=f(x)与曲线y2=f(x)sinx在交点处相切.
各位有会做的,请尽快回复,将感谢不尽!
答案
交点是(1/2 +k)* pi,f(1/2 +k)* pi)
再证明两个曲线在这个点上的斜率相等就可以了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.