微分方程dy/dx=(x²+y²)/2xy,
题目
微分方程dy/dx=(x²+y²)/2xy,
答案
原式可化为:dy/dx=0.5(x/y)+0.5(y/x)
令u=y/x 则y=ux,dy/dx=xdu/dx+u
原式变成:xdu/dx+u=0.5/u+0.5u
化简后把有关u的放左边,x的放右边,整理得到:
[u/(1-u^2)]du=(1/2x)dx
两边积分得,原方程的解为:
lnx+ln(1-u^2)=c
(c为常数,u^2表示u的平方~)
最后把u=y/x代入即可.(结果你自己带进去,我就不写啦)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点