设A,B分别是m*n,m*p的矩阵,试证明;存在n*p矩阵X,使得AX=B的充分必要条件是 r(A)=r(A,B),

设A,B分别是m*n,m*p的矩阵,试证明;存在n*p矩阵X,使得AX=B的充分必要条件是 r(A)=r(A,B),

题目
设A,B分别是m*n,m*p的矩阵,试证明;存在n*p矩阵X,使得AX=B的充分必要条件是 r(A)=r(A,B),
其中(A,B)表示A,B为字块作成的分块矩阵.
答案
充分性
首先r(A,B) >= r(A)
这是平凡的
r( A,B ) =r( A,AX ) =r( A*(E,X) ) <= r(A)
所以
r(A)=r(A,B)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.