证明:在15个连续自然数中最多只有6个素数

证明:在15个连续自然数中最多只有6个素数

题目
证明:在15个连续自然数中最多只有6个素数
答案
15个连续自然数中至少有7个偶数
最多有8个奇数
15个连续自然数中至少有一个数是15的倍数,
因此还剩7个数
15个连续自然数中至少有一个数是9的倍数
因此还剩6个数
因此最多有6个素数
再看一特例,1-15
里面有2、3、5、7、11、13,也只有6个
因此原命题成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.