求递推数列{An}通项公式,A1=0,An+3A(n+1)=3^(n-2)
题目
求递推数列{An}通项公式,A1=0,An+3A(n+1)=3^(n-2)
数列{An}满足,A1=0,An+3A(n+1)=3^(n-2),(n≥1,n∈N+)
求通项公式
答案
由An+3A(n+1)=3^(n-2)可得到
3[A(n+1)-(1/90)*3^(n+1)]=-[An-(1/90)*3^n]
设Bn=An-(1/90)*3^n
则有
B(n+1)/Bn=-1/3
所以Bn是个等比数列,B1=A1-(1/90)*3=-1/30
所以Bn=(B1)*(-1/3)^(n-1)=[(-1)^n](1/30)*(1/3)^(n-1)
所以An-(1/90)*3^n=[(-1)^n](1/30)*(1/3)^(n-1)
An=[3^n+((-1)^n)*(3^(2-n))]/90
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点